

Update on Groundwater-Level Elevations in the Denver Basin Bedrock Aquifers of Elbert County, Colorado, 2021-2024

Presentation to the Elbert County Board of County

Commissioners

11 July 2022

Cory Russell & Kelli Palko
USGS Colorado Water Science Center

Outline-

- Overview of the Denver Basin bedrock aquifers
- Measurement methods
- Well selection
- New wells selection
- Measurement general summary
- Analysis methods used for 2015-2018 data
- Future work, questions, and discussion

Denver Basin bedrock aquifers

EAST WEST A'FEET FEET 7,000 -7,000 6,000 6,000 5,000--5,000 4,000-4,000 3 000 3,000 NORTH SOUTH \boldsymbol{B} FEET FEET 8.000 --8,000 Castle Rock Conglomerate 7.000 -7,000 -6.000 Denver Formation 5,000 Arapahoe Formation 4,000 -3.000 Modified from Bohson, 1997 30 MILES 30 KILOMETERS VERTICAL EXAGGERATION X 32 NORTH AMERICAN VERTICAL DATUM 1988

Measurement methods

- Discrete depth-to-water measurements collected with calibrated steel tape or electronic tape
 - 2 manual measurements for validation and assess well condition
- Continuous depth-to-water measurements calibrated with discrete measurement
- Groundwater elevation calculated from depth-to-water

(1)

Groundwater-level elevation = LSD — Water level below LSD

where
Groundwater-level elevation
LSD

Water level below LSD

is groundwater-level elevation, in ft above NAVD 88; is land-surface datum, in ft above NAVD 88; and is measured depth, in ft, to groundwater below land-surface datum.

Well selection

Denver Basin bedrock aquifer extents

- Alluvial deposits aquifer outcrop extent
- Upper Dawson aquifer outcrop extent
- Lower Dawson aquifer outcrop extent
- Denver aquifer outcrop extent
- Arapahoe aquifer outcrop extent
- Laramie-Fox Hills aquifer outcrop extent

Well and aquifer of completion

- Well in Upper Dawson aquifer
- Well in Lower Dawson aquifer
- Well in Denver aquifer
- Well in Arapahoe aquifer
- Well in Laramie Fox Hills aquifer

40 wells

- 11 Upper Dawson
- 9 Lower Dawson
- 8 Denver
- 8 Arapahoe
- 4 Laramie-Fox Hills

10 continuous WL

- 3 Upper Dawson
- 3 Lower Dawson
- 3 Denver
- 1 Laramie-Fox Hills

New Well selection

- Prioritize the eastern section of Elbert County
 - More recent development
 - More available options

Measurement general summary

- Month of highest GW Elevation
 - Late winter to early spring
- Month of lowest GW Elevation
 - Summer and fall

Analysis methods

- 2015-2018 Trend analysis linear regression and linear regression with seasonality terms
 - p-value ≤ 0.10
 - $R^2 \ge 0.40$
 - β₁
- Relative difference and potentiometric surface
 - April 2015 April 2018
 - Ordinary kriging in ArcGIS

$$Y = \beta_0 + (\beta_1 \times T)$$

where

is groundwater-level elevation, in ft above NAVD 88;

T is time, in decimal years;

 β_0 is intercept, in ft above NAVD 88; and

is slope coefficient of T, in ft/year.

$$Y = \beta_0 + (\beta_1 \times T) + (\beta_2 \times \sin(2\pi T)) + (\beta_3 \times \cos(2\pi T))$$

where

Y is groundwater-level elevation, in ft above NAVD 88;

is time, in decimal years;

3 is intercept, in ft above NAVD 88;

is slope coefficient of T, in ft/year;

, is coefficient of seasonal sine term, years; and

is coefficient of seasonal cosine term, in years.

Anticipated Report Analyses

- Groundwaterelevation trend maps
- Potentiometric surface maps

Future Work, Questions, and Discussion

- FY2021-23: Continuation of data collection, and annual presentations to Elbert County
- In FY2023, initial steps of USGS SIR preparation, which will present summaries and trend analyses of the data from 2015 through 2023
- SIR to be published by the end of FY2024
- Continuation of work with a new proposal in FY2024

Workplan Element	FY2022				FY2023				FY2024			
	Oct '21	Jan' 22	Apr '22	Jul '22	Oct '22	Jan '23	Apr '23	Jul '23	Oct '23	Jan '24	Apr '24	Jul '24
Task 1 (Data collection and management)	X	X	Х	Х	Χ	X	X	Х	X			
Task 2 (Report preparation)							X	X	Χ	Χ	X	

Cory Russell: carussell@usgs.gov